Let $B^{(N,d)}$ be Levy's $N$-parameter Brownian motion in $d$-space. It is shown that almost surely $B^{(N,d)}$ doubles the Hausdorff dimension of every Borel set in the parameter space when $d \geqslant 2N$. The dimension of the range of $B$ is also determined in this case.
@article{1176995053,
author = {Tran, Lanh Tat},
title = {The Range of Levy's $N$-Parameter Brownian Motion in $d$-Space},
journal = {Ann. Probab.},
volume = {7},
number = {6},
year = {1979},
pages = { 532-536},
language = {en},
url = {http://dml.mathdoc.fr/item/1176995053}
}
Tran, Lanh Tat. The Range of Levy's $N$-Parameter Brownian Motion in $d$-Space. Ann. Probab., Tome 7 (1979) no. 6, pp. 532-536. http://gdmltest.u-ga.fr/item/1176995053/