A Sharp Inequality for Martingale Transforms
Burkholder, D. L.
Ann. Probab., Tome 7 (1979) no. 6, p. 858-863 / Harvested from Project Euclid
If $g$ is the transform of a martingale $f$ under a predictable sequence $v$ uniformly bounded in absolute value by 1, then $$\lambda P(g^\ast \geqslant \lambda) \leqslant 2\|f\|_1, \lambda > 0$$, and this inequality is sharp.
Publié le : 1979-10-14
Classification:  Martingale,  martingale transform,  maximal function,  square function,  Brownian motion,  Ito integral,  60G45,  60H05
@article{1176994944,
     author = {Burkholder, D. L.},
     title = {A Sharp Inequality for Martingale Transforms},
     journal = {Ann. Probab.},
     volume = {7},
     number = {6},
     year = {1979},
     pages = { 858-863},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994944}
}
Burkholder, D. L. A Sharp Inequality for Martingale Transforms. Ann. Probab., Tome 7 (1979) no. 6, pp.  858-863. http://gdmltest.u-ga.fr/item/1176994944/