Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/SansSerif/Regular/Main.js
Conditional Distributions as Derivatives
Pfanzagl, P.
Ann. Probab., Tome 7 (1979) no. 6, p. 1046-1050 / Harvested from Project Euclid
Let (X, \mathscr{a}, P) be a probability space, Y a complete separable metric space, Z a separable metric space, and s: X\rightarrow Y, t: X\rightarrow Z Borel measurable functions. Then the weak limit of P\{s \in B, t \in C\}/P\{t \in C\} for C\downarrow\{z\} exists for P-\mathrm{a.a.} z \in Z, and is a regular conditional distribution of s, given t.
Publié le : 1979-12-14
Classification:  Conditional distributions,  differentiation of measures,  60A10,  28A15
@article{1176994897,
     author = {Pfanzagl, P.},
     title = {Conditional Distributions as Derivatives},
     journal = {Ann. Probab.},
     volume = {7},
     number = {6},
     year = {1979},
     pages = { 1046-1050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994897}
}
Pfanzagl, P. Conditional Distributions as Derivatives. Ann. Probab., Tome 7 (1979) no. 6, pp.  1046-1050. http://gdmltest.u-ga.fr/item/1176994897/