Conjugate $\Pi$-Variation and Process Inversion
de Haan, L. ; Resnick, S. I.
Ann. Probab., Tome 7 (1979) no. 6, p. 1028-1035 / Harvested from Project Euclid
The well-known concept of conjugate slowly varying functions is specialized to the subclass $\Pi$ of the slowly varying functions. The concept is then used to connect convergence of certain increasing stochastic processes (suitably normalized) with convergence of their inverses.
Publié le : 1979-12-14
Classification:  $\Pi$-variation,  conjugate transformation,  regular variation,  weak convergence,  $M_1$ and $J_1$ topology,  first passage processes,  renewal processes,  extremal process,  60F05,  60B10
@article{1176994895,
     author = {de Haan, L. and Resnick, S. I.},
     title = {Conjugate $\Pi$-Variation and Process Inversion},
     journal = {Ann. Probab.},
     volume = {7},
     number = {6},
     year = {1979},
     pages = { 1028-1035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994895}
}
de Haan, L.; Resnick, S. I. Conjugate $\Pi$-Variation and Process Inversion. Ann. Probab., Tome 7 (1979) no. 6, pp.  1028-1035. http://gdmltest.u-ga.fr/item/1176994895/