Pairwise Independent Random Variables
O'Brien, G. L.
Ann. Probab., Tome 8 (1980) no. 6, p. 170-175 / Harvested from Project Euclid
Let $Y_1, \cdots, Y_r$ be independent random variables, each uniformly distributed on $\mathscr{M} = \{1,2, \cdots, M\}$. It is shown that at most $N = 1 + M + \cdots + M^{r-1}$ pairwise independent random variables, all uniform on $\mathscr{M}$ and all functions of $(Y_1, \cdots, Y_r)$, can be defined. If $M = p^k$ for some prime $p$, the maximum can be attained by a strictly stationary sequence $X_1, \cdots, X_N$, for which any $r$ successive random variables are independent.
Publié le : 1980-02-14
Classification:  Pairwise independence,  stationary sequences,  pseudorandom numbers,  block designs,  60C05,  65C10,  60B99,  62K10
@article{1176994834,
     author = {O'Brien, G. L.},
     title = {Pairwise Independent Random Variables},
     journal = {Ann. Probab.},
     volume = {8},
     number = {6},
     year = {1980},
     pages = { 170-175},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994834}
}
O'Brien, G. L. Pairwise Independent Random Variables. Ann. Probab., Tome 8 (1980) no. 6, pp.  170-175. http://gdmltest.u-ga.fr/item/1176994834/