Three Limit Theorems for Scores Based on Occupancy Numbers
Quine, M. P.
Ann. Probab., Tome 8 (1980) no. 6, p. 148-156 / Harvested from Project Euclid
Let $N$ balls be distributed independently and at random into $n$ boxes. Let $\rho_{nj}$ denote the number of balls in the $j$th box. Let $(c_0, c_1, c_2, \cdots)$ be a sequence of real numbers. Three limit theorems are proved for the sum $\sum^n_{j=1}c_{\rho_{nj}}$ as $N$ and $n$ tend to infinity in such a way that $N/n \rightarrow 0$.
Publié le : 1980-02-14
Classification:  Limit theorems,  normal,  Poisson,  degenerate,  occupancy numbers,  60F05
@article{1176994831,
     author = {Quine, M. P.},
     title = {Three Limit Theorems for Scores Based on Occupancy Numbers},
     journal = {Ann. Probab.},
     volume = {8},
     number = {6},
     year = {1980},
     pages = { 148-156},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994831}
}
Quine, M. P. Three Limit Theorems for Scores Based on Occupancy Numbers. Ann. Probab., Tome 8 (1980) no. 6, pp.  148-156. http://gdmltest.u-ga.fr/item/1176994831/