Tight Bounds for the Renewal Function of a Random Walk
Daley, D. J.
Ann. Probab., Tome 8 (1980) no. 6, p. 615-621 / Harvested from Project Euclid
It is shown that for a random walk $\{S_n\}$ starting at the origin having generic step random variable $X$ with finite second moment and positive mean $\lambda^{-1} = EX$, the renewal function $U(y) = E {\tt\#}\{n = 0,1, \cdots: S_n \leqslant y\}$ satisfies for $y \geqslant 0$ $$|U(y) - \lambda y - \frac{1}{2}\lambda^2EX^2| \leqslant \frac{1}{2}\lambda^2EX^2 - \lambda EM \leqslant \frac{1}{2}\lambda^2EX^2_+$$ where $M = - \inf_{n\geqslant 0}S_n$. Both the upper and lower bounds are attained by simple random walk. Bounds are also given for $U(-y)(y \geqslant 0)$ and for the renewal function of a transient renewal process when $\Pr\{X \geqslant 0\} = 1 > \Pr\{0 \leqslant X < \infty\}$. The proof uses a Wiener-Hopf like identity relating $U$ to the renewal functions of the ascending and descending ladder processes to which Lorden's tight bound for the renewal process case is applied.
Publié le : 1980-06-14
Classification:  Renewal function bounds,  ladder variables,  60K05,  60K25
@article{1176994732,
     author = {Daley, D. J.},
     title = {Tight Bounds for the Renewal Function of a Random Walk},
     journal = {Ann. Probab.},
     volume = {8},
     number = {6},
     year = {1980},
     pages = { 615-621},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994732}
}
Daley, D. J. Tight Bounds for the Renewal Function of a Random Walk. Ann. Probab., Tome 8 (1980) no. 6, pp.  615-621. http://gdmltest.u-ga.fr/item/1176994732/