Let $(X_1, X_2)$ be independent $N(0, 1)$ variables and let $P(v_1, v_2) = P\lbrack(X_1, X_2) \in C + (v_1, v_2)\rbrack$, where $C$ is the square $\{|x_1| \leqslant a,|x_2| \leqslant a\}$. By demonstrating that $P\lbrack|X_i - v_i|\leqslant a\rbrack$ is $\log$ concave in $v^2_i$, the extrema of $P(v_1, v_2)$ on all circles $\{v^2_1 + v^2_2 = b^2\}$ are determined. The results are extended to determine the extrema of the probability of a cube in $R^n$. The proof is based on a log concavity-preserving property of the Laplace transforms.
@article{1176994667,
author = {Hall, Richard L. and Kanter, Marek and Perlman, Michael D.},
title = {Inequalities for the Probability Content of a Rotated Square and Related Convolutions},
journal = {Ann. Probab.},
volume = {8},
number = {6},
year = {1980},
pages = { 802-813},
language = {en},
url = {http://dml.mathdoc.fr/item/1176994667}
}
Hall, Richard L.; Kanter, Marek; Perlman, Michael D. Inequalities for the Probability Content of a Rotated Square and Related Convolutions. Ann. Probab., Tome 8 (1980) no. 6, pp. 802-813. http://gdmltest.u-ga.fr/item/1176994667/