Sizes of Order Statistical Events of Stationary Processes
Rudolph, Daniel ; Steele, J. Michael
Ann. Probab., Tome 8 (1980) no. 6, p. 1079-1084 / Harvested from Project Euclid
Given a process $\{X_i\}$, any permutation $\sigma: \lbrack 1, n\rbrack \rightarrow \lbrack 1, n\rbrack$ determines an order statistical event $A(\sigma) = \{X_{\sigma(1)} < X_{\sigma(2)} < \cdots < X_{\sigma(n)}\}$. How many events $A(\sigma)$ are needed to form a union whose probability exceeds $1 - \epsilon$? This question is answered in the case of stationary ergodic processes with finite entropy.
Publié le : 1980-12-14
Classification:  Order statistics,  entropy,  stationary processes,  de Bruijn sequences,  directed graphs,  equipartition property,  60G10,  60005
@article{1176994569,
     author = {Rudolph, Daniel and Steele, J. Michael},
     title = {Sizes of Order Statistical Events of Stationary Processes},
     journal = {Ann. Probab.},
     volume = {8},
     number = {6},
     year = {1980},
     pages = { 1079-1084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994569}
}
Rudolph, Daniel; Steele, J. Michael. Sizes of Order Statistical Events of Stationary Processes. Ann. Probab., Tome 8 (1980) no. 6, pp.  1079-1084. http://gdmltest.u-ga.fr/item/1176994569/