Borel Sets Via Games
Blackwell, D.
Ann. Probab., Tome 9 (1981) no. 6, p. 321-322 / Harvested from Project Euclid
A family of games $G = G(\sigma, u)$ is defined such that (a) for each $\sigma$ the set of all $u$ for which Player I can force a win in $G(\sigma, u)$ is a Borel set $B(u)$ and (b) every Borel set is a $B(u)$ for some $u$.
Publié le : 1981-04-14
Classification:  Borel sets,  games,  stop rules,  28A05,  02K30
@article{1176994474,
     author = {Blackwell, D.},
     title = {Borel Sets Via Games},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 321-322},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994474}
}
Blackwell, D. Borel Sets Via Games. Ann. Probab., Tome 9 (1981) no. 6, pp.  321-322. http://gdmltest.u-ga.fr/item/1176994474/