On the Law of Large Numbers
Hanson, D. L. ; Russo, Ralph P.
Ann. Probab., Tome 9 (1981) no. 6, p. 513-519 / Harvested from Project Euclid
Suppose $X_n$ is an i.i.d. sequence of random variables with mean $\mu$ and that $t_n$ is a nondecreasing sequence of positive integers such that $t_n \leq n$. Let $S_n = X_1 + \cdots + X_n$. We give conditions under which $\max_{t_n \leq k \leq n} \big|\frac{S_n - S_{n - k}}{k} - \mu \big| \rightarrow 0$ almost surely and we discuss sharpness.
Publié le : 1981-06-14
Classification:  Law of large numbers,  strong law of large numbers,  60F15,  60F10
@article{1176994425,
     author = {Hanson, D. L. and Russo, Ralph P.},
     title = {On the Law of Large Numbers},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 513-519},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994425}
}
Hanson, D. L.; Russo, Ralph P. On the Law of Large Numbers. Ann. Probab., Tome 9 (1981) no. 6, pp.  513-519. http://gdmltest.u-ga.fr/item/1176994425/