The Mean Number of Real Roots for One Class of Random Polynomials
Shenker, M.
Ann. Probab., Tome 9 (1981) no. 6, p. 510-512 / Harvested from Project Euclid
Let $\xi_0, \xi_1, \cdots, \xi_n, \cdots$ be a Gaussian stationary sequence of random variables. We study the asymptotic behavior of the mean number of real roots of the polynomial $P_n(x) = \xi_0 + \xi_1x + \cdots + \xi_nx^n$ as $n \rightarrow \infty$.
Publié le : 1981-06-14
Classification:  60-02,  Gaussian stationary sequence,  random polynomials,  real roots,  asymptotic behavior,  correlation function,  60G15
@article{1176994424,
     author = {Shenker, M.},
     title = {The Mean Number of Real Roots for One Class of Random Polynomials},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 510-512},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994424}
}
Shenker, M. The Mean Number of Real Roots for One Class of Random Polynomials. Ann. Probab., Tome 9 (1981) no. 6, pp.  510-512. http://gdmltest.u-ga.fr/item/1176994424/