Selecting Universal Partitions in Ergodic Theory
Kieffer, John C. ; Rahe, Maurice
Ann. Probab., Tome 9 (1981) no. 6, p. 705-709 / Harvested from Project Euclid
Let $\mathscr{P}$ be the set of all $k$-atom measurable partitions of a standard measurable space $(\Omega, \mathscr{F})$, and let $T$ be an isomorphism of $(\Omega, \mathscr{F})$ onto itself. Given $P \in \mathscr{P}$, each probability measure $\mu$ on $\mathscr{F}$ stationary and ergodic with respect to $T$ determines a joint distribution under $\mu$ of the $k$-state stochastic process $(P, T)$. We say that $P$ is universal for a property $S$ (depending on $\mu$) if the distribution of $(P, T)$ satisfies $S$ for all $\mu$. Theorems are given which assure the existence of a universal $P \in \mathscr{P}$.
Publié le : 1981-08-14
Classification:  Stationary process,  partition distance,  Sinai Theorem,  Ornstein isomorphism theorem,  $\bar{d}$ distance,  ergodic decomposition,  28A65,  60G10,  94A15
@article{1176994379,
     author = {Kieffer, John C. and Rahe, Maurice},
     title = {Selecting Universal Partitions in Ergodic Theory},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 705-709},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994379}
}
Kieffer, John C.; Rahe, Maurice. Selecting Universal Partitions in Ergodic Theory. Ann. Probab., Tome 9 (1981) no. 6, pp.  705-709. http://gdmltest.u-ga.fr/item/1176994379/