Markov Functions
Rogers, L. C. G. ; Pitman, J. W.
Ann. Probab., Tome 9 (1981) no. 6, p. 573-582 / Harvested from Project Euclid
A simple condition sufficient to ensure that a function of a time-homogeneous Markov process is again a time-homogeneous Markov process is proved. This result is then used to study a number of diffusions; in particular, an extension of a result of Pitman is proved, from which it is possible easily to deduce the path decompositions of Williams.
Publié le : 1981-08-14
Classification:  Brownian motion,  Bessel process,  function of a Markov process,  Markov kernel,  transition semigroup,  60J25,  60J35,  60J65,  60J60
@article{1176994363,
     author = {Rogers, L. C. G. and Pitman, J. W.},
     title = {Markov Functions},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 573-582},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994363}
}
Rogers, L. C. G.; Pitman, J. W. Markov Functions. Ann. Probab., Tome 9 (1981) no. 6, pp.  573-582. http://gdmltest.u-ga.fr/item/1176994363/