Bounds for Weighted Empirical Distribution Functions
Mason, David M.
Ann. Probab., Tome 9 (1981) no. 6, p. 881-884 / Harvested from Project Euclid
Let $G_n$ be the empirical distribution based on $n$ independent uniform random variables. Criteria for bounds on the supremum of weighted discrepancies between $G_n(u)$ and $u$ of the form: $|w_\nu(u) D_n(u)|$, where $D_n(u) = G_n(u) - u, w_\nu(u) = (u(1 - u))^{-1 + \nu}$ and $0 \leq \nu \leq 1$, are derived. Also an inequality closely related to an equality due to Daniels (1945) is given.
Publié le : 1981-10-14
Classification:  Weighted empirical distributions,  bounds,  uniform order statistics,  60F15,  60617,  62G30
@article{1176994315,
     author = {Mason, David M.},
     title = {Bounds for Weighted Empirical Distribution Functions},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 881-884},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994315}
}
Mason, David M. Bounds for Weighted Empirical Distribution Functions. Ann. Probab., Tome 9 (1981) no. 6, pp.  881-884. http://gdmltest.u-ga.fr/item/1176994315/