A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional
Burkholder, D. L.
Ann. Probab., Tome 9 (1981) no. 6, p. 997-1011 / Harvested from Project Euclid
We study Banach-space-valued martingale transforms and, in particular, characterize those Banach spaces for which the classical theorems of the real-valued case carry over. For example, if $B$ is a Banach space and $1 < p < \infty$, then there exists a positive real number $c_p$ such that $\|\epsilon_1d_1 + \cdots + \epsilon_n d_n \|_p \leq c_p \|d_1 + \cdots + d_n \|_p$ for all $B$-valued martingale difference sequences $d = (d_1, d_2,\cdots)$ and all numbers $\epsilon_1, \epsilon_2,\cdots$ in $\{-1, 1\}$ if and only if there is a symmetric biconvex function $\zeta$ on $B \times B$ satisfying $\zeta(0, 0) > 0$ and $\zeta(x, y) \leq | x + y | \text{if} | x | \leq 1 \leq | y |$.
Publié le : 1981-12-14
Classification:  Martingale,  martingale transform,  unconditionality,  Banach space,  biconvex function,  60G42,  46B20,  60G46,  46C05
@article{1176994270,
     author = {Burkholder, D. L.},
     title = {A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional},
     journal = {Ann. Probab.},
     volume = {9},
     number = {6},
     year = {1981},
     pages = { 997-1011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176994270}
}
Burkholder, D. L. A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional. Ann. Probab., Tome 9 (1981) no. 6, pp.  997-1011. http://gdmltest.u-ga.fr/item/1176994270/