Functional Limit Theorems for Extreme Values of Arrays of Independent Random Variables
Serfozo, Richard
Ann. Probab., Tome 10 (1982) no. 4, p. 172-177 / Harvested from Project Euclid
For an array $\{X_{ni}\}$ of independent, uniformly null random variables, several necessary and sufficient conditions are given for the convergence in distribution of its extremal process $\mathbf{M}_n = (M^1_n, M^2_n, \cdots)$ as $n \rightarrow \infty$, where $M^k_n(t) = k$th largest $\{X_{ni}: i/n \leq t\}, t > 0$. It is shown that if $\mathbf{M}_n$ converges, then its limit is an extremal process of a Poisson process on the plane. The limit cannot be an extremal process of a non-Poisson, infinitely divisible point process, which is possible for certain stationary variables. A characterization of the convergence of $\mathbf{M}_n$, without the uniformly null assumption, is also given.
Publié le : 1982-02-14
Classification:  Order statistics,  extreme values,  functional limit theorem,  point process,  Poisson process,  extremal process,  60F17,  60G55
@article{1176993920,
     author = {Serfozo, Richard},
     title = {Functional Limit Theorems for Extreme Values of Arrays of Independent Random Variables},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 172-177},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993920}
}
Serfozo, Richard. Functional Limit Theorems for Extreme Values of Arrays of Independent Random Variables. Ann. Probab., Tome 10 (1982) no. 4, pp.  172-177. http://gdmltest.u-ga.fr/item/1176993920/