Intersections of Traces of Random Walks with Fixed Sets
Ruzsa, I. Z. ; Szekely, G. J.
Ann. Probab., Tome 10 (1982) no. 4, p. 132-136 / Harvested from Project Euclid
The probability of the event $|S \cap T| = \infty$ is investigated, where $S$ is the trace of a random walk on the set of positive integers and $T$ is a fixed set of natural numbers.
Publié le : 1982-02-14
Classification:  Regenerative phenomena,  Borel-Cantelli lemma,  Markov chains,  60G50,  60J10
@article{1176993918,
     author = {Ruzsa, I. Z. and Szekely, G. J.},
     title = {Intersections of Traces of Random Walks with Fixed Sets},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 132-136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993918}
}
Ruzsa, I. Z.; Szekely, G. J. Intersections of Traces of Random Walks with Fixed Sets. Ann. Probab., Tome 10 (1982) no. 4, pp.  132-136. http://gdmltest.u-ga.fr/item/1176993918/