Comparisons of Stop Rule and Supremum Expectations of I.I.D. Random Variables
Hill, T. P. ; Kertz, Robert P.
Ann. Probab., Tome 10 (1982) no. 4, p. 336-345 / Harvested from Project Euclid
Implicitly defined (and easily approximated) universal constants $1.1 < a_n < 1.6, n = 2,3, \cdots$, are found so that if $X_1, X_2, \cdots$ are i.i.d. non-negative random variables and if $T_n$ is the set of stop rules for $X_1, \cdots, X_n$, then $E(\max\{X_1, \cdots, X_n\}) \leq a_n \sup\{EX_t: t \in T_n\}$, and the bound $a_n$ is best possible. Similar universal constants $0 < b_n < \frac{1}{4}$ are found so that if the $\{X_i\}$ are i.i.d. random variables taking values only in $\lbrack a, b\rbrack$, then $E(\max\{X_1, \cdots, X_n\}) \leq \sup\{EX_t: t \in T_n\} + b_n(b - a)$, where again the bound $b_n$ is best possible. In both situations, extremal distributions for which equality is attained (or nearly attained) are given in implicit form.
Publié le : 1982-05-14
Classification:  Optimal stopping,  extremal distributions,  inequalities for stochastic processes,  60G40,  62L15,  90C99
@article{1176993861,
     author = {Hill, T. P. and Kertz, Robert P.},
     title = {Comparisons of Stop Rule and Supremum Expectations of I.I.D. Random Variables},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 336-345},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993861}
}
Hill, T. P.; Kertz, Robert P. Comparisons of Stop Rule and Supremum Expectations of I.I.D. Random Variables. Ann. Probab., Tome 10 (1982) no. 4, pp.  336-345. http://gdmltest.u-ga.fr/item/1176993861/