When Do Weighted Sums of Independent Random Variables have a Density--Some Results and Examples
Reich, Jakob I.
Ann. Probab., Tome 10 (1982) no. 4, p. 787-798 / Harvested from Project Euclid
Let $\{X_n\}$ be a sequence of independent random variables and $\{a_n\}$ a positive decreasing sequence such that $\sum a_nX_n$ is a random variable. We show that under mild conditions on $\{X_n\}$ (i) if for every $\delta, \lambda > 0$ $\sum^\infty_{n=1} \int^{\delta/a_{n+1}}_{\delta/a_n} \exp(-\lambda\xi^2 \sum^\infty_{k=n+1} a^2_k) d\xi < \infty$ then $P(\sum a_nX_n \in dx)$ has a density. (ii) $\lim_{\xi \rightarrow \infty}|E(e^{i\xi\sum a_nX_n})| = 0$ for every $\{X_n\} \operatorname{iff} \lim_{N\rightarrow\infty} a^{-2}_N \sum^\infty_{n=N + 1} a^2_n = \infty.$ Several consequences, examples and counterexamples are given.
Publié le : 1982-08-14
Classification:  E05,  G30,  G50,  E10,  Range splitting sequences of independent random variables,  weighted sums of range splitting sequences,  distribution absolutely continuous,  singular with respect to Lebesgue measure
@article{1176993787,
     author = {Reich, Jakob I.},
     title = {When Do Weighted Sums of Independent Random Variables have a Density--Some Results and Examples},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 787-798},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993787}
}
Reich, Jakob I. When Do Weighted Sums of Independent Random Variables have a Density--Some Results and Examples. Ann. Probab., Tome 10 (1982) no. 4, pp.  787-798. http://gdmltest.u-ga.fr/item/1176993787/