Optimal Stopping on Autoregressive Schemes
Finster, Mark
Ann. Probab., Tome 10 (1982) no. 4, p. 745-753 / Harvested from Project Euclid
For $\cdots \varepsilon_{-1}, \varepsilon_0, \varepsilon_1 \cdots$ i.i.d. random variables the autoregression $X_n = \varepsilon_n + a_1X_{n-1} + a_2X_{n-2} + \cdots$ yields a payoff $\gamma^n \sum^n_{-\infty} w_kX_k$ when stopped at time $n, 0 < \gamma < 1$ being the discount factor. The optimal rule is characterized and under certain restrictions is the first passage time $t = \inf \{n: X_n \geq c\}$. As $c \rightarrow \infty$ the distributions of $t$ and the remainder term $R_t = X_t - c$ are asymptotically independent and determined for exponential and algebraic tailed distributions on $\varepsilon_n$. An asymptotic expression for the optimal payoff is given and $c = c(\gamma)$ is calculated so that $t$ yields a payoff asymptotically optimal and asymptotic to $c$ as $\gamma \rightarrow 1$.
Publié le : 1982-08-14
Classification:  Autoregression,  optimal payoff,  first passage time,  asymptotic distribution,  62L15,  60G40,  60G10,  60J05,  62P20
@article{1176993782,
     author = {Finster, Mark},
     title = {Optimal Stopping on Autoregressive Schemes},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 745-753},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993782}
}
Finster, Mark. Optimal Stopping on Autoregressive Schemes. Ann. Probab., Tome 10 (1982) no. 4, pp.  745-753. http://gdmltest.u-ga.fr/item/1176993782/