On the Increments of Wiener and Related Processes
Revesz, P.
Ann. Probab., Tome 10 (1982) no. 4, p. 613-622 / Harvested from Project Euclid
Let $\{W(t), 0 \leq t < +\infty\}$ be a standard Wiener process and $0 < b_t \leq t$ be a nondecreasing function of $t$. The properties of the process $Y_1(t) = b^{-1/2}_t \sup_{0\leq s \leq t - b_t}(W(s + b_t) - W(s))$ are investigated. One of the results says that $\lim_{t\rightarrow\infty}(Y_1(t) - (2 \log tb^{-1}_t)^{1/2}) = 0$ a.s. if $b_t$ is "much less" than $t$. Analogous properties of similar processes are studied.
Publié le : 1982-08-14
Classification:  Law of the iterated logarithm,  Wiener process,  empirical density function,  Kiefer process,  60F15,  60G17
@article{1176993771,
     author = {Revesz, P.},
     title = {On the Increments of Wiener and Related Processes},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 613-622},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993771}
}
Revesz, P. On the Increments of Wiener and Related Processes. Ann. Probab., Tome 10 (1982) no. 4, pp.  613-622. http://gdmltest.u-ga.fr/item/1176993771/