Optimal Triangulation of Random Samples in the Plane
Steele, J. Michael
Ann. Probab., Tome 10 (1982) no. 4, p. 548-553 / Harvested from Project Euclid
Let $T_n$ denote the length of the minimal triangulation of $n$ points chosen independently and uniformly from the unit square. It is proved that $T_n/\sqrt n$ converges almost surely to a positive constant. This settles a conjecture of Gyorgy Turan.
Publié le : 1982-08-14
Classification:  Triangulation,  probabilistic algorithm,  subadditive Euclidean functionals,  jackknife,  Efron-Stein inequality,  60F15,  60D05,  68C05,  68E10
@article{1176993766,
     author = {Steele, J. Michael},
     title = {Optimal Triangulation of Random Samples in the Plane},
     journal = {Ann. Probab.},
     volume = {10},
     number = {4},
     year = {1982},
     pages = { 548-553},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993766}
}
Steele, J. Michael. Optimal Triangulation of Random Samples in the Plane. Ann. Probab., Tome 10 (1982) no. 4, pp.  548-553. http://gdmltest.u-ga.fr/item/1176993766/