Remainder Term Estimates of the Renewal Function
Carlsson, Hasse
Ann. Probab., Tome 11 (1983) no. 4, p. 143-157 / Harvested from Project Euclid
Let $\mu$ be a probability measure and $H(x) = \sum^\infty_{n=0} \mu^{n_\ast}(-\infty, x\rbrack$ its renewal function. It is well-known that $H(x) - x/\mu_1 - \mu_2/2\mu^2_1 \rightarrow 0$ as $x \rightarrow +\infty$ if $\mu_1 > 0$ and $\mu$ is a nonlattice measure. ($\mu_k$ is the $k$th moment of $\mu$.) The rate of this convergence is studied under further conditions on $\mu$.
Publié le : 1983-02-14
Classification:  Renewal theory,  renewal function,  60K05
@article{1176993664,
     author = {Carlsson, Hasse},
     title = {Remainder Term Estimates of the Renewal Function},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 143-157},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993664}
}
Carlsson, Hasse. Remainder Term Estimates of the Renewal Function. Ann. Probab., Tome 11 (1983) no. 4, pp.  143-157. http://gdmltest.u-ga.fr/item/1176993664/