Some Results on the Cluster Set $C\bigg(\bigg{\frac{S_n}{a_n}\bigg}\bigg)$ and the LIL
de Acosta, A. ; Kuelbs, J.
Ann. Probab., Tome 11 (1983) no. 4, p. 102-122 / Harvested from Project Euclid
We investigate the cluster set $C(\{S_n/a_n\})$ under conditions necessary for the bounded law of the iterated logarithm, and obtain necessary and sufficient conditions for the LIL in spaces satisfying a certain comparison principle. In particular, these results settle some previously unanswered questions in the Hilbert space setting.
Publié le : 1983-02-14
Classification:  Law of the iterated logarithm,  cluster set,  smooth norm spaces,  type 2 space,  upper Gaussian comparison principle,  60B05,  60B11,  60B12,  60F10,  60F15,  28C20,  60B10
@article{1176993662,
     author = {de Acosta, A. and Kuelbs, J.},
     title = {Some Results on the Cluster Set $C\bigg(\bigg{\frac{S\_n}{a\_n}\bigg}\bigg)$ and the LIL},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 102-122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993662}
}
de Acosta, A.; Kuelbs, J. Some Results on the Cluster Set $C\bigg(\bigg{\frac{S_n}{a_n}\bigg}\bigg)$ and the LIL. Ann. Probab., Tome 11 (1983) no. 4, pp.  102-122. http://gdmltest.u-ga.fr/item/1176993662/