A New Proof of the Hartman-Wintner Law of the Iterated Logarithm
de Acosta, Alejandro
Ann. Probab., Tome 11 (1983) no. 4, p. 270-276 / Harvested from Project Euclid
A new proof of the Hartman-Wintner law of the iterated logarithm is given. The main new ingredient is a simple exponential inequality. The same method gives a new, simpler proof of a basic result of Kuelbs on the LIL in the Banach space setting.
Publié le : 1983-05-14
Classification:  Hartman-Wintner law of the iterated logarithm,  exponential inequality,  cluster set,  law of the iterated logarithm in Banach spaces,  60B05,  60F05,  60F10,  60F15
@article{1176993596,
     author = {de Acosta, Alejandro},
     title = {A New Proof of the Hartman-Wintner Law of the Iterated Logarithm},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 270-276},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993596}
}
de Acosta, Alejandro. A New Proof of the Hartman-Wintner Law of the Iterated Logarithm. Ann. Probab., Tome 11 (1983) no. 4, pp.  270-276. http://gdmltest.u-ga.fr/item/1176993596/