On the Almost Sure Convergence of Randomly Weighted Sums of Random Elements
Taylor, R. L. ; Calhoun, C. A.
Ann. Probab., Tome 11 (1983) no. 4, p. 795-797 / Harvested from Project Euclid
Let $\{X_n\}$ be random elements in a separable Banach space which is $p$-smoothable and let $\{a_k\}$ and $\{A_k\}$ denote positive random variables such that almost surely $A_k$ is monotonically increasing to $\infty$ and that $A_k/a_k \rightarrow \infty$. Convergence almost surely is obtained for the weighted sum $A^{-1}_n \sum^n_{k=1} a_kX_k$ and is related to a moment condition on the random elements and a growth condition on the random weights.
Publié le : 1983-08-14
Classification:  Weighted sums,  random weights,  laws of large numbers,  $p$-smoothable,  60B12,  60B11
@article{1176993524,
     author = {Taylor, R. L. and Calhoun, C. A.},
     title = {On the Almost Sure Convergence of Randomly Weighted Sums of Random Elements},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 795-797},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993524}
}
Taylor, R. L.; Calhoun, C. A. On the Almost Sure Convergence of Randomly Weighted Sums of Random Elements. Ann. Probab., Tome 11 (1983) no. 4, pp.  795-797. http://gdmltest.u-ga.fr/item/1176993524/