Sharp Bounds on the Absolute Moments of a Sum of Two I.I.D. Random Variables
Cox, David C. ; Kemperman, J. H. B.
Ann. Probab., Tome 11 (1983) no. 4, p. 765-771 / Harvested from Project Euclid
We determine the exact optimal bounds $A_p$ and $B_p$ such that $A_p\lbrack E|X|^p + E|Y|^p\rbrack \leq E|X + Y|^p \leq B_p\lbrack E|X|^p + E|Y|^p\rbrack,$ $(p \geq 1)$, whenever $X, Y$ are i.i.d. random variables with mean zero. We give examples of random variables attaining equality or nearly so. Exactly the same bounds $A_p$ and $B_p$ are obtained in the more general case where it is only assumed that $E(X \mid Y) = E(Y \mid X) = 0$.
Publié le : 1983-08-14
Classification:  Sharp bounds on moments,  sum of two i.i.d. random variables,  martingales,  60E15,  60G50,  60G42
@article{1176993521,
     author = {Cox, David C. and Kemperman, J. H. B.},
     title = {Sharp Bounds on the Absolute Moments of a Sum of Two I.I.D. Random Variables},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 765-771},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993521}
}
Cox, David C.; Kemperman, J. H. B. Sharp Bounds on the Absolute Moments of a Sum of Two I.I.D. Random Variables. Ann. Probab., Tome 11 (1983) no. 4, pp.  765-771. http://gdmltest.u-ga.fr/item/1176993521/