Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables
Silverman, B. W.
Ann. Probab., Tome 11 (1983) no. 4, p. 745-751 / Harvested from Project Euclid
A class of empirical processes having the structure of $U$-statistics is considered. The weak convergence of the processes to a continuous Gaussian process is proved in weighted sup-norm metrics stronger than the uniform topology. As an application, a central limit theorem is derived for a very general class of non-parametric statistics.
Publié le : 1983-08-14
Classification:  Weak convergence,  sup-norm metrics,  empirical process,  dissociated random variables,  $U$-statistics,  order statistics,  $GL$-statistics,  asymptotic normality,  60F17,  62E20,  62G80
@article{1176993518,
     author = {Silverman, B. W.},
     title = {Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 745-751},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993518}
}
Silverman, B. W. Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables. Ann. Probab., Tome 11 (1983) no. 4, pp.  745-751. http://gdmltest.u-ga.fr/item/1176993518/