A Uniform Lower Bound for Hausdorff Dimension for Transient Symmetric Levy Processes
Hendricks, W. J.
Ann. Probab., Tome 11 (1983) no. 4, p. 589-592 / Harvested from Project Euclid
For transient symmetric Levy processes we determine a uniform lower bound for the Hausdorff dimension of the range of a process on various time sets. This complements earlier work which provided a uniform upper bound. An example is provided in which both bounds are attained.
Publié le : 1983-08-14
Classification:  Hausdorff dimension,  Levy processes,  Sample path properties,  60G17,  60J30,  60J40,  60J25
@article{1176993503,
     author = {Hendricks, W. J.},
     title = {A Uniform Lower Bound for Hausdorff Dimension for Transient Symmetric Levy Processes},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 589-592},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993503}
}
Hendricks, W. J. A Uniform Lower Bound for Hausdorff Dimension for Transient Symmetric Levy Processes. Ann. Probab., Tome 11 (1983) no. 4, pp.  589-592. http://gdmltest.u-ga.fr/item/1176993503/