On the Maximum of a Random Walk with Small Negative Drift
Klass, Michael J.
Ann. Probab., Tome 11 (1983) no. 4, p. 491-505 / Harvested from Project Euclid
Let $X_1, X_2, \cdots$ be i.i.d. mean zero random variables. Let $S_n = X_1 + \cdots + X_n$ and $M_\varepsilon = \sup_{n\geqq 1} (S_n - n\varepsilon)^+$ for $\varepsilon > 0$. Suppose $\sigma^2 = E(X_1)^2$ is positive and finite. Then $EM_\varepsilon < \infty$ and $2\varepsilon\sigma^{-2} EM_\varepsilon$ converges to 1 as $\varepsilon \searrow 0^+$. In this paper we obtain an approximation of the discrepancy $1 - 2\varepsilon\sigma^{-2} EM_\varepsilon$ as $\varepsilon \searrow 0^+$. To do so we derive a first order approximation of $P(M_\varepsilon < y)$ which is uniform in $y$ as $\varepsilon \searrow 0^+$ and asymptotically exact for $y$ on $\lbrack y_\varepsilon, \infty)$ provided $y_\varepsilon \rightarrow \infty$. Approximation of $P(M_\varepsilon < y)$ necessitates a digression into renewal theory. We derive an approximation of the expected time $E\tau_y$ required by a sum $T_n = Y_1 + \cdots + Y_n$ of i.i.d. non-negative random variables to reach or exceed $y$. The bounds obtained are of particular interest when $EX = \infty$ and are best possible in a rather strong sense.
Publié le : 1983-08-14
Classification:  Random walk,  negative drift,  fluctuation theory,  expected maximum,  ladder variables,  renewal theory,  infinite mean variables,  60F10,  60G50,  60J15,  60K05
@article{1176993498,
     author = {Klass, Michael J.},
     title = {On the Maximum of a Random Walk with Small Negative Drift},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 491-505},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993498}
}
Klass, Michael J. On the Maximum of a Random Walk with Small Negative Drift. Ann. Probab., Tome 11 (1983) no. 4, pp.  491-505. http://gdmltest.u-ga.fr/item/1176993498/