Hydrodynamics of the Voter Model
Presutti, Errico ; Spohn, Herbert
Ann. Probab., Tome 11 (1983) no. 4, p. 867-875 / Harvested from Project Euclid
We study the voter model on $\mathbb{Z}^d, d \geqq 3$, for a sequence $\mu^\varepsilon$ of initial states which have a gradient in the mean magnetization of the order $\varepsilon, \varepsilon \rightarrow 0$. We prove that the magnetization field $m^\varepsilon(f, t) = \varepsilon^d \sum f(\varepsilon x)\eta(x, \varepsilon^{-2}t)$ tends to a deterministic field $m(f, t) = \int dqf(q)m(q, t)$ as $\varepsilon \rightarrow 0. m(q, t)$ is the solution of the diffusion equation. The fluctuations of $m^\varepsilon(f, t)$ around its mean are given by an infinite dimensional, non-homogeneous Ornstein-Uhlenbeck process. In the limit as $\varepsilon \rightarrow 0$, locally, i.e. around $(\varepsilon^{-1}q, \varepsilon^{-2}t)$, the voter model is in equilibrium with parameter $m(q, t)$.
Publié le : 1983-11-14
Classification:  Voter model,  states of local equilibrium,  fluctuations of the magnetization field,  60K35,  82A05
@article{1176993437,
     author = {Presutti, Errico and Spohn, Herbert},
     title = {Hydrodynamics of the Voter Model},
     journal = {Ann. Probab.},
     volume = {11},
     number = {4},
     year = {1983},
     pages = { 867-875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993437}
}
Presutti, Errico; Spohn, Herbert. Hydrodynamics of the Voter Model. Ann. Probab., Tome 11 (1983) no. 4, pp.  867-875. http://gdmltest.u-ga.fr/item/1176993437/