Let $S_n = X_1 + \cdots + X_n$ where $(X_n)$ is a sequence of 0-mean i.i.d. random vectors in a $B$-space such that $P(\|X_n\| > t) \leq CP(|X_0| > t)$ for some random variable $X_0 \in L_p$. We show that $S_n/n^{1/p} \rightarrow 0$ in $L_p$ iff $B$ is $p$-stable $(1 \leq p < 2)$.
@article{1176993393,
author = {Korzeniowski, Andrzej},
title = {On Marcinkiewicz SLLN in Banach Spaces},
journal = {Ann. Probab.},
volume = {12},
number = {4},
year = {1984},
pages = { 279-280},
language = {en},
url = {http://dml.mathdoc.fr/item/1176993393}
}
Korzeniowski, Andrzej. On Marcinkiewicz SLLN in Banach Spaces. Ann. Probab., Tome 12 (1984) no. 4, pp. 279-280. http://gdmltest.u-ga.fr/item/1176993393/