A Central Limit Problem in Random Evolutions
Watkins, Joseph C.
Ann. Probab., Tome 12 (1984) no. 4, p. 480-513 / Harvested from Project Euclid
Let $\{T_n\}_{n \geq 1}$ be a sequence of independent and identically distributed strongly continuous semigroups on a separable Banach space. The corresponding generators $\{A_n\}_{n \geq 1}$ satisfy $E\lbrack A_n\rbrack = 0$. Conditions are given to guarantee that the weak limit $Y(t) = \text{limit}_{n \rightarrow \infty} \prod^{\lbrack n^2t\rbrack}_{i = 1} T_i(1/n) Y_n(0)$ exists, and is characterized as the unique solution of a martingale problem. Transport phenomena, random classical mechanics, and families of bounded operators are the featured examples.
Publié le : 1984-05-14
Classification:  Central limit problem,  random evolution,  weak convergence,  martingale problem,  duality,  60F17,  60B10,  60B12,  60F05,  60G44
@article{1176993302,
     author = {Watkins, Joseph C.},
     title = {A Central Limit Problem in Random Evolutions},
     journal = {Ann. Probab.},
     volume = {12},
     number = {4},
     year = {1984},
     pages = { 480-513},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993302}
}
Watkins, Joseph C. A Central Limit Problem in Random Evolutions. Ann. Probab., Tome 12 (1984) no. 4, pp.  480-513. http://gdmltest.u-ga.fr/item/1176993302/