A Limit Theorem for $N_{0n}/n$ in First-Passage Percolation
Zhang, Yu ; Zhang, Yi Ci
Ann. Probab., Tome 12 (1984) no. 4, p. 1068-1076 / Harvested from Project Euclid
Let $U$ be the distribution function of the nonnegative passage time of an individual bond of the square lattice, and let $\theta_{0n}$ denote one of the first passage times $a_{0n}, b_{0n}$. We define $N_{0n} = \min\{|r|:r \text{is a route of} \theta_{0n}\},$ where $|r|$ is the number of bonds in $r$. It is proved that if $U(0) > 1/2$ then $\lim_{n \rightarrow \infty} \frac{N^a_{0n}{n}} = \lim_{n \rightarrow \infty} \frac{N^b_{0n}{n}} = \lambda \text{a.s. and in} L^1,$ where $\lambda$ is a constant which only depends on $U(0)$.
Publié le : 1984-11-14
Classification:  First-passage percolation,  length of routes,  60K35
@article{1176993142,
     author = {Zhang, Yu and Zhang, Yi Ci},
     title = {A Limit Theorem for $N\_{0n}/n$ in First-Passage Percolation},
     journal = {Ann. Probab.},
     volume = {12},
     number = {4},
     year = {1984},
     pages = { 1068-1076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993142}
}
Zhang, Yu; Zhang, Yi Ci. A Limit Theorem for $N_{0n}/n$ in First-Passage Percolation. Ann. Probab., Tome 12 (1984) no. 4, pp.  1068-1076. http://gdmltest.u-ga.fr/item/1176993142/