We prove that the critical probability for site percolation on the three-dimensional cubic lattice satisfies the inequality $p^{(3)}_c < 1/2$. An application to the three-dimensional Ising model is given.
@article{1176993004,
author = {Campanino, M. and Russo, L.},
title = {An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice},
journal = {Ann. Probab.},
volume = {13},
number = {4},
year = {1985},
pages = { 478-491},
language = {en},
url = {http://dml.mathdoc.fr/item/1176993004}
}
Campanino, M.; Russo, L. An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice. Ann. Probab., Tome 13 (1985) no. 4, pp. 478-491. http://gdmltest.u-ga.fr/item/1176993004/