An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice
Campanino, M. ; Russo, L.
Ann. Probab., Tome 13 (1985) no. 4, p. 478-491 / Harvested from Project Euclid
We prove that the critical probability for site percolation on the three-dimensional cubic lattice satisfies the inequality $p^{(3)}_c < 1/2$. An application to the three-dimensional Ising model is given.
Publié le : 1985-05-14
Classification:  Graph,  Bernoulli measure,  chain,  cluster,  critical percolation probability,  pivotal sites,  Ising model,  60K35,  82A67
@article{1176993004,
     author = {Campanino, M. and Russo, L.},
     title = {An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 478-491},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176993004}
}
Campanino, M.; Russo, L. An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice. Ann. Probab., Tome 13 (1985) no. 4, pp.  478-491. http://gdmltest.u-ga.fr/item/1176993004/