We show that for the transition kernels $(\mu_y)$ of a certain random walk in $\mathbb{R}^2$ and the Radon Transform in $\mathbb{R}^3$ there is no subset $K$ of positive Lebesgue-measure such that $(\mu_y)_{y\in K}$ is completely orthogonal.
Publié le : 1985-08-14
Classification:
Orthogonal kernels,
random walks,
Radon Transform,
60A10,
60J15
@article{1176992927,
author = {Weis, Lutz W.},
title = {Two Examples Concerning a Theorem of Burgess and Mauldin},
journal = {Ann. Probab.},
volume = {13},
number = {4},
year = {1985},
pages = { 1028-1031},
language = {en},
url = {http://dml.mathdoc.fr/item/1176992927}
}
Weis, Lutz W. Two Examples Concerning a Theorem of Burgess and Mauldin. Ann. Probab., Tome 13 (1985) no. 4, pp. 1028-1031. http://gdmltest.u-ga.fr/item/1176992927/