Two Examples Concerning a Theorem of Burgess and Mauldin
Weis, Lutz W.
Ann. Probab., Tome 13 (1985) no. 4, p. 1028-1031 / Harvested from Project Euclid
We show that for the transition kernels $(\mu_y)$ of a certain random walk in $\mathbb{R}^2$ and the Radon Transform in $\mathbb{R}^3$ there is no subset $K$ of positive Lebesgue-measure such that $(\mu_y)_{y\in K}$ is completely orthogonal.
Publié le : 1985-08-14
Classification:  Orthogonal kernels,  random walks,  Radon Transform,  60A10,  60J15
@article{1176992927,
     author = {Weis, Lutz W.},
     title = {Two Examples Concerning a Theorem of Burgess and Mauldin},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 1028-1031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992927}
}
Weis, Lutz W. Two Examples Concerning a Theorem of Burgess and Mauldin. Ann. Probab., Tome 13 (1985) no. 4, pp.  1028-1031. http://gdmltest.u-ga.fr/item/1176992927/