Bochner's Theorem in Measurable Dual of Type 2 Banach Space
Okazaki, Yoshiaki
Ann. Probab., Tome 13 (1985) no. 4, p. 1022-1023 / Harvested from Project Euclid
Let $\mu$ be a Radon probability measure on a type 2 Banach space $E$. The following Bochner's theorem is proved. For every continuous positive definite function $\phi(\phi(0) = 1)$ on $E$, there exists a Radon probability measure $\sigma_\phi$ on the measurable dual $H_0(\mu)$ of $(E, \mu)$ with the characteristic functional $\phi$ (in some restricted sense).
Publié le : 1985-08-14
Classification:  Bochner's theorem,  measurable dual,  type 2 Banach space,  pre-Gaussian measure,  28C20,  60B11
@article{1176992925,
     author = {Okazaki, Yoshiaki},
     title = {Bochner's Theorem in Measurable Dual of Type 2 Banach Space},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 1022-1023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992925}
}
Okazaki, Yoshiaki. Bochner's Theorem in Measurable Dual of Type 2 Banach Space. Ann. Probab., Tome 13 (1985) no. 4, pp.  1022-1023. http://gdmltest.u-ga.fr/item/1176992925/