On Randomized Tactics and Optimal Stopping in the Plane
Millet, Annie
Ann. Probab., Tome 13 (1985) no. 4, p. 946-965 / Harvested from Project Euclid
Given a two-parameter filtration $(\mathscr{F}_z)$ satisfying the conditional independence assumption (F4), we prove the existence of an optimal stopping point for adapted processes $(X_z)$ indexed by $\mathbb{N}^2$ or $\mathbb{R}^2_+$ which are of class $(D)$, and have regularity properties which generalize the usual one-parameter ones, and are expressed in terms of sequences of 1- and 2-stopping points.
Publié le : 1985-08-14
Classification:  Optimal stopping,  stopping point,  optional increasing path,  tactic,  extreme point,  Choquet's theorem,  conditional independence,  60G40,  60G99,  60G20,  60G57
@article{1176992916,
     author = {Millet, Annie},
     title = {On Randomized Tactics and Optimal Stopping in the Plane},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 946-965},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992916}
}
Millet, Annie. On Randomized Tactics and Optimal Stopping in the Plane. Ann. Probab., Tome 13 (1985) no. 4, pp.  946-965. http://gdmltest.u-ga.fr/item/1176992916/