Convergence of Quadratic Forms in $p$-Stable Random Variables and $\theta_p$-Radonifying Operators
Cambanis, Stamatis ; Rosinski, Jan ; Woyczynski, Wojbor A.
Ann. Probab., Tome 13 (1985) no. 4, p. 885-897 / Harvested from Project Euclid
Necessary and sufficient conditions are given for the almost sure convergence of the quadratic form $\sum \sum f_{jk}M_jM_k$ where $(M_j)$ is a sequence of i.i.d. $p$-stable random variables. A connection is established between the convergence of the quadratic form and a radonifying property of the infinite matrix operator $(f_{kj})$.
Publié le : 1985-08-14
Classification:  Stable random variables,  quadratic forms,  $\theta_p$-radonifying operators,  60E07,  60B12
@article{1176992912,
     author = {Cambanis, Stamatis and Rosinski, Jan and Woyczynski, Wojbor A.},
     title = {Convergence of Quadratic Forms in $p$-Stable Random Variables and $\theta\_p$-Radonifying Operators},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 885-897},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992912}
}
Cambanis, Stamatis; Rosinski, Jan; Woyczynski, Wojbor A. Convergence of Quadratic Forms in $p$-Stable Random Variables and $\theta_p$-Radonifying Operators. Ann. Probab., Tome 13 (1985) no. 4, pp.  885-897. http://gdmltest.u-ga.fr/item/1176992912/