The Smallest Eigenvalue of a Large Dimensional Wishart Matrix
Silverstein, Jack W.
Ann. Probab., Tome 13 (1985) no. 4, p. 1364-1368 / Harvested from Project Euclid
For positive integers $s, n$ let $M_s = (1/s)V_sV^T_s$, where $V_s$ is an $n \times s$ matrix composed of i.i.d. $N(0, 1)$ random variables. Assume $n = n(s)$ and $n/s \rightarrow y \in (0, 1)$ as $s \rightarrow \infty$. Then it is shown that the smallest eigenvalue of $M_s$ converges almost surely to $(1 - \sqrt y)^2$ as $s \rightarrow \infty$.
Publié le : 1985-11-14
Classification:  Smallest eigenvalue of random matrix,  Gersgorin's theorem,  $\chi^2$ distribution,  60F15,  62H99
@article{1176992819,
     author = {Silverstein, Jack W.},
     title = {The Smallest Eigenvalue of a Large Dimensional Wishart Matrix},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 1364-1368},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992819}
}
Silverstein, Jack W. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix. Ann. Probab., Tome 13 (1985) no. 4, pp.  1364-1368. http://gdmltest.u-ga.fr/item/1176992819/