On the Distribution of First Passage and Return Times for Small Sets
Cogburn, Robert
Ann. Probab., Tome 13 (1985) no. 4, p. 1219-1223 / Harvested from Project Euclid
For a Harris recurrent Markov chain with invariant initial distribution $\pi$, we consider the return times $\tau_\varepsilon$ to state sets $A_\varepsilon$ with $0 < \pi(A_\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and show that, provided the probability of early returns to $A_\varepsilon$ approaches 0, the $\tau_\varepsilon$, multiplied by suitable scaling factors, are asymptotically exponentially distributed.
Publié le : 1985-11-14
Classification:  First passage times,  return times,  Harris recurrent Markov chains,  state sets of small probability,  exponential distribution,  60J05,  60G10,  60K05,  60E05,  60F05
@article{1176992806,
     author = {Cogburn, Robert},
     title = {On the Distribution of First Passage and Return Times for Small Sets},
     journal = {Ann. Probab.},
     volume = {13},
     number = {4},
     year = {1985},
     pages = { 1219-1223},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992806}
}
Cogburn, Robert. On the Distribution of First Passage and Return Times for Small Sets. Ann. Probab., Tome 13 (1985) no. 4, pp.  1219-1223. http://gdmltest.u-ga.fr/item/1176992806/