Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function
Csorgo, Miklos ; Csorgo, Sandor ; Horvath, Lajos ; Mason, David M.
Ann. Probab., Tome 14 (1986) no. 4, p. 86-118 / Harvested from Project Euclid
We prove general invariance principles for integral functions of the empirical process. As corollaries we derive probabilistic proofs of the sufficiency criteria for a distribution to belong to the domain of attraction of the normal and stable laws with index $0 < \alpha < 2$. In the process we obtain equivalent statements of these criteria in terms of the tail behaviour of the underlying quantile function. We also give a representation of any stable random variable with index $0 < \alpha < 2$ in terms of a linear combination of two independent and identically distributed Poisson integrals. The role of a fixed number of extreme terms is exactly determined.
Publié le : 1986-01-14
Classification:  Integral functionals,  empirical distribution function,  normal convergence criteria,  stable convergence criteria,  quantiles,  Poisson integrals,  60F17,  60F05,  60E07
@article{1176992618,
     author = {Csorgo, Miklos and Csorgo, Sandor and Horvath, Lajos and Mason, David M.},
     title = {Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 86-118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992618}
}
Csorgo, Miklos; Csorgo, Sandor; Horvath, Lajos; Mason, David M. Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function. Ann. Probab., Tome 14 (1986) no. 4, pp.  86-118. http://gdmltest.u-ga.fr/item/1176992618/