Tail Behaviour for Suprema of Empirical Processes
Adler, Robert J. ; Brown, Lawrence D.
Ann. Probab., Tome 14 (1986) no. 4, p. 1-30 / Harvested from Project Euclid
We consider multivariate empirical processes $X_n(t) := \sqrt n (F_n(t) - F(t))$, where $F_n$ is an empirical distribution function based on i.i.d. variables with distribution function $F$ and $t \in \mathbb{R}^k$. For $X_F$ the weak limit of $X_n$, it is shown that $c(F, k)\lambda^{2(k-1)}e^{-2\lambda^2} \leq P\big\{\sup_t X_F(t) > \lambda\big\} \leq C(k)\lambda^{2(k-1)}e^{-2\lambda^2}$ for large $\lambda$ and appropriate constants $c, C$. When $k = 2$ these constants can be identified, thus permitting the development of Kolmogorov--Smirnov tests for bivariate problems. For general $k$ the bound can be used to obtain sharp upper-lower class results for the growth of $\sup_tX_n(t)$ with $n$.
Publié le : 1986-01-14
Classification:  Tail behaviour of suprema,  empirical processes,  Kolmogorov-Smirnov tests,  Gaussian random fields,  62G30,  60F10,  60F15,  62E20
@article{1176992616,
     author = {Adler, Robert J. and Brown, Lawrence D.},
     title = {Tail Behaviour for Suprema of Empirical Processes},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 1-30},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992616}
}
Adler, Robert J.; Brown, Lawrence D. Tail Behaviour for Suprema of Empirical Processes. Ann. Probab., Tome 14 (1986) no. 4, pp.  1-30. http://gdmltest.u-ga.fr/item/1176992616/