Asymptotic Equivalence of Fluctuation Fields for Reversible Exclusion Processes with Speed Change
Masi, A. De ; Presutti, E. ; Spohn, H. ; Wick, W. D.
Ann. Probab., Tome 14 (1986) no. 4, p. 409-423 / Harvested from Project Euclid
We consider stationary, reversible exclusion processes with speed change and prove that for sufficiently small interaction the fluctuation fields constructed from local functions become proportional to the density fluctuation field when averaged over suitably large space-time regions. If the exclusion process is of gradient type, this result implies that the density fluctuation field converges to an infinite dimensional Ornstein-Uhlenbeck process.
Publié le : 1986-04-14
Classification:  Exclusion processes with speed change,  infinite-dimensional Ornstein-Uhlenbeck processes,  linearized hydrodynamics,  60K35,  60F05,  82A05
@article{1176992524,
     author = {Masi, A. De and Presutti, E. and Spohn, H. and Wick, W. D.},
     title = {Asymptotic Equivalence of Fluctuation Fields for Reversible Exclusion Processes with Speed Change},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 409-423},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992524}
}
Masi, A. De; Presutti, E.; Spohn, H.; Wick, W. D. Asymptotic Equivalence of Fluctuation Fields for Reversible Exclusion Processes with Speed Change. Ann. Probab., Tome 14 (1986) no. 4, pp.  409-423. http://gdmltest.u-ga.fr/item/1176992524/