Random $f$-Expansions
Aaronson, Jon
Ann. Probab., Tome 14 (1986) no. 4, p. 1037-1057 / Harvested from Project Euclid
We consider the asymptotic distribution properties of $f$-expansion digits. In particular, if $x = 1/\varphi_0(x) - 1/\varphi_1(x) - \cdots$ etc., then $\frac{1}{n} \sum^{n-1}_{k=0} \varphi_k \rightarrow 3 \text{in measure}.$
Publié le : 1986-07-14
Classification:  28D,  60F,  60G,  $f$-expansions,  conservative ergodic measure preserving transformation,  stable laws,  Darling-Kac distributional limit theorem,  47A35
@article{1176992457,
     author = {Aaronson, Jon},
     title = {Random $f$-Expansions},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 1037-1057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992457}
}
Aaronson, Jon. Random $f$-Expansions. Ann. Probab., Tome 14 (1986) no. 4, pp.  1037-1057. http://gdmltest.u-ga.fr/item/1176992457/