Random Multilinear Forms
Krakowiak, Wieslaw ; Szulga, Jerzy
Ann. Probab., Tome 14 (1986) no. 4, p. 955-973 / Harvested from Project Euclid
We study convergence of multilinear forms $\sum f(n_1,\ldots, n_k) X_{n_1} \cdots X_{n_k}$ in symmetric independent random variables. We show that the multilinear form converges if and only if its "tetrahedronal" part and "diagonal" parts of different orders converge simultaneously. For "tetrahedronal" forms a.s. and $L_0$ convergence are equivalent. Moreover, they are equivalent to $L_p$ convergence provided $(X_k)$ satisfies a Marcinkiewicz-Paley-Zygmund condition for $p \geq 2$.
Publié le : 1986-07-14
Classification:  Random multilinear forms,  generalized Orlicz spaces,  Marcinkiewicz-Paley-Zygmund condition,  60G42,  42C15,  60G50,  60F25,  46A45,  60H99,  15A63
@article{1176992450,
     author = {Krakowiak, Wieslaw and Szulga, Jerzy},
     title = {Random Multilinear Forms},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 955-973},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992450}
}
Krakowiak, Wieslaw; Szulga, Jerzy. Random Multilinear Forms. Ann. Probab., Tome 14 (1986) no. 4, pp.  955-973. http://gdmltest.u-ga.fr/item/1176992450/