Conditions D'Integrabilite Pour Les Multiplicateurs Dans le TLC Banachique
Ledoux, M. ; Talagrand, M.
Ann. Probab., Tome 14 (1986) no. 4, p. 916-921 / Harvested from Project Euclid
Let $X$ be a Banach space valued random variable satisfying the central limit theorem and $\xi$ be a real valued random variable, independent of $X$. If $\xi$ is in the Lorentz space $L_{2,1}$, the product $\xi X$ satisfies the central limit theorem. We show that this condition on $\xi$ cannot be improved, characterizing $L_{2,1}$ as the space of all random variables $\xi$ such that the preceding implication holds for all vector valued $X$ satisfying the central limit theorem. In particular, there exist independent random variables $X$ and $\xi$ both satisfying the central limit theorem such that $\xi X$ does not.
Publié le : 1986-07-14
Classification:  Theoreme limite central,  multiplicateurs,  espace de Lorentz $L_{2,1}$,  60B11,  60B12,  46E30
@article{1176992447,
     author = {Ledoux, M. and Talagrand, M.},
     title = {Conditions D'Integrabilite Pour Les Multiplicateurs Dans le TLC Banachique},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 916-921},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1176992447}
}
Ledoux, M.; Talagrand, M. Conditions D'Integrabilite Pour Les Multiplicateurs Dans le TLC Banachique. Ann. Probab., Tome 14 (1986) no. 4, pp.  916-921. http://gdmltest.u-ga.fr/item/1176992447/