The Spectral Radius of Large Random Matrices
Geman, Stuart
Ann. Probab., Tome 14 (1986) no. 4, p. 1318-1328 / Harvested from Project Euclid
Let $\{m_{ij}\}, i = 1,2,\ldots, j = 1,2,\ldots,$ be iid random variables with $Em_{11} = 0$ and $Em^2_{11} = \sigma^2$. For each $n$ define $M_n = \{m_{ij}\}_{1 \leq i, j \leq n}$, the $n \times n$ matrix whose $(i, j)$ component is $m_{ij}$. We show that $\lim \sup_{n \rightarrow \infty}\rho_n \leq \sigma$ a.s., where $\rho_n$ is the spectral radius of $M_n/\sqrt n$. Evidence from computer experiments indicates that in fact $\rho_n \rightarrow \sigma$ a.s.
Publié le : 1986-10-14
Classification:  Spectral radius,  random matrices,  stability of random systems,  60F15
@article{1176992372,
     author = {Geman, Stuart},
     title = {The Spectral Radius of Large Random Matrices},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 1318-1328},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992372}
}
Geman, Stuart. The Spectral Radius of Large Random Matrices. Ann. Probab., Tome 14 (1986) no. 4, pp.  1318-1328. http://gdmltest.u-ga.fr/item/1176992372/