Central Limit Theorem for the Contact Process
Schonmann, Roberto Henrique
Ann. Probab., Tome 14 (1986) no. 4, p. 1291-1295 / Harvested from Project Euclid
If $(\xi^A(t), t \geq 0)$ is the contact process with initial configuration $A, f: \mathscr{P}(\mathbb{Z}) \rightarrow \mathbb{R}$ is any cylindrical function and $|A| = \infty$, we prove a central limit theorem for $(f(\xi^A(t)), t \geq 0)$ when the rate of infection is supercritical.
Publié le : 1986-10-14
Classification:  Contact process,  central limit theorem,  60K35,  60F05
@article{1176992370,
     author = {Schonmann, Roberto Henrique},
     title = {Central Limit Theorem for the Contact Process},
     journal = {Ann. Probab.},
     volume = {14},
     number = {4},
     year = {1986},
     pages = { 1291-1295},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992370}
}
Schonmann, Roberto Henrique. Central Limit Theorem for the Contact Process. Ann. Probab., Tome 14 (1986) no. 4, pp.  1291-1295. http://gdmltest.u-ga.fr/item/1176992370/